On the Prescribed Scalar Curvature Problem in R , Local Uniqueness and Periodicity
نویسندگان
چکیده
We obtain a local uniqueness result for bubbling solutions of the prescribed scalar curvature problem in R . Such result implies that some bubbling solutions preserve the symmetry from the scalar curvature K(y). In particular, we prove in this paper that if K(y) is periodic in y1 with period 1 and has a local maximum point at 0, then a bubbling solution whose blow-up set is {(jL, 0, · · · , 0) : j = 0,±,±2, · · · } must be periodic in y1 provided the positive integer L is large enough.
منابع مشابه
Existence of Metrics with Prescribed Scalar Curvature on the Volume Element Preserving Deformation
In this paper,we obtain two results on closed Reimainnian manifold M × [0, T ].When T is small enough,to any prescribed scalar curvature, the existence and uniqueness of metrics are obtained on the volume element preserving deformation.When T is large and the given scalar curvature is small enough,the same result holds.
متن کاملSolution of Vacuum Field Equation Based on Physics Metrics in Finsler Geometry and Kretschmann Scalar
The Lemaître-Tolman-Bondi (LTB) model represents an inhomogeneous spherically symmetric universefilledwithfreelyfallingdustlikematterwithoutpressure. First,wehaveconsideredaFinslerian anstaz of (LTB) and have found a Finslerian exact solution of vacuum field equation. We have obtained the R(t,r) and S(t,r) with considering establish a new solution of Rµν = 0. Moreover, we attempttouseFinslergeo...
متن کاملPrescribed Scalar Curvature problem on Complete manifolds
Conditions on the geometric structure of a complete Riemannian manifold are given to solve the prescribed scalar curvature problem in the positive case. The conformal metric obtained is complete. A minimizing sequence is constructed which converges strongly to a solution. In a second part, the prescribed scalar curvature problem of zero value is solved which is equivalent to find a solution to ...
متن کاملThe Existence Results for Solutions of Indefinite Scalar Curvature Problem
In this paper, we consider the indefinite scalar curvature problem on R. We propose new conditions on the prescribing scalar curvature function such that the scalar curvature problem on R (similarly, on S ) has at least one solution. The key observation in our proof is that we use the bifurcation method to get a large solution and then after establishing the Harnack inequality for solutions nea...
متن کاملConvex hypersurfaces of prescribed curvatures
For a smooth strictly convex closed hypersurface Σ in R, the Gauss map n : Σ → S is a diffeomorphism. A fundamental question in classical differential geometry concerns how much one can recover through the inverse Gauss map when some information is prescribed on S ([27]). This question has attracted much attention for more than a hundred years. The most notable example is probably the Minkowski...
متن کامل