On the Prescribed Scalar Curvature Problem in R , Local Uniqueness and Periodicity

نویسندگان

  • YINBIN DENG
  • CHANG-SHOU LIN
  • SHUSEN YAN
چکیده

We obtain a local uniqueness result for bubbling solutions of the prescribed scalar curvature problem in R . Such result implies that some bubbling solutions preserve the symmetry from the scalar curvature K(y). In particular, we prove in this paper that if K(y) is periodic in y1 with period 1 and has a local maximum point at 0, then a bubbling solution whose blow-up set is {(jL, 0, · · · , 0) : j = 0,±,±2, · · · } must be periodic in y1 provided the positive integer L is large enough.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Existence of Metrics with Prescribed Scalar Curvature on the Volume Element Preserving Deformation

In this paper,we obtain two results on closed Reimainnian manifold M × [0, T ].When T is small enough,to any prescribed scalar curvature, the existence and uniqueness of metrics are obtained on the volume element preserving deformation.When T is large and the given scalar curvature is small enough,the same result holds.

متن کامل

Solution of Vacuum Field Equation Based on Physics Metrics in Finsler Geometry and Kretschmann Scalar

The Lemaître-Tolman-Bondi (LTB) model represents an inhomogeneous spherically symmetric universefilledwithfreelyfallingdustlikematterwithoutpressure. First,wehaveconsideredaFinslerian anstaz of (LTB) and have found a Finslerian exact solution of vacuum field equation. We have obtained the R(t,r) and S(t,r) with considering establish a new solution of Rµν = 0. Moreover, we attempttouseFinslergeo...

متن کامل

Prescribed Scalar Curvature problem on Complete manifolds

Conditions on the geometric structure of a complete Riemannian manifold are given to solve the prescribed scalar curvature problem in the positive case. The conformal metric obtained is complete. A minimizing sequence is constructed which converges strongly to a solution. In a second part, the prescribed scalar curvature problem of zero value is solved which is equivalent to find a solution to ...

متن کامل

The Existence Results for Solutions of Indefinite Scalar Curvature Problem

In this paper, we consider the indefinite scalar curvature problem on R. We propose new conditions on the prescribing scalar curvature function such that the scalar curvature problem on R (similarly, on S ) has at least one solution. The key observation in our proof is that we use the bifurcation method to get a large solution and then after establishing the Harnack inequality for solutions nea...

متن کامل

Convex hypersurfaces of prescribed curvatures

For a smooth strictly convex closed hypersurface Σ in R, the Gauss map n : Σ → S is a diffeomorphism. A fundamental question in classical differential geometry concerns how much one can recover through the inverse Gauss map when some information is prescribed on S ([27]). This question has attracted much attention for more than a hundred years. The most notable example is probably the Minkowski...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014